Do Bistable Steric Poisson–Nernst–Planck Models Describe Single-Channel Gating?
نویسندگان
چکیده
منابع مشابه
Stochastic models of ion channel gating
Stochastic models of ion channel gating date back as far as the pioneering work of Hodgkin and Huxley (1952), whose gating variables are often interpreted as probabilities. Sakmann and Neher directed the efforts that led to the first single-channel recordings, for which they won the Nobel Prize in Physiology and Medicine in 1991. Single-channel recordings (Sakmann and Neher, 1995) demonstrate t...
متن کاملA geometric comparison of single chain multi-state models of ion channel gating.
Multi-state models of ion channel gating have been used extensively, but choosing optimally small yet sufficiently complex models to describe particular experimental data remains a difficult task. In order to provide some insight into appropriate model selection, this paper presents some basic results about the behavior of solutions of multi-state models, particularly those arranged in a chain ...
متن کاملLinking Exponential Components to Kinetic States in Markov Models for Single-Channel Gating
Discrete state Markov models have proven useful for describing the gating of single ion channels. Such models predict that the dwell-time distributions of open and closed interval durations are described by mixtures of exponential components, with the number of exponential components equal to the number of states in the kinetic gating mechanism. Although the exponential components are readily c...
متن کاملChannel Gating
Large conductance, voltageand Ca 2 -activated K (BK Ca ) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca 2 . Similar to an archeon Ca 2 -activated K channel, MthK, each of four subunits of BK Ca may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the Mth...
متن کاملDiffusion models of ion-channel gating and the origin of power-law distributions from single-channel recording.
The lifetimes of the unitary currents from ion channels, as revealed from single-channel recording, are traditionally thought to follow exponential or multiexponential distributions. The interpretation of these event-time distributions is that the gating process follows Markov kinetics among a small number of states. There is recent evidence, however, that certain systems exhibit distributions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry B
سال: 2018
ISSN: 1520-6106,1520-5207
DOI: 10.1021/acs.jpcb.8b00854